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Abstract

We consider Taylor-Aris dispersion in columns of nearly retangular cross section
of large aspect ratio. We generalize the results of [1] and [2vho showed that the
e ective di usion rate for perfectly rectangular cross sedions is remarkably di er-
ent than the di usion rate between two parallel plates { as th e aspect ratio goes to
in nity, the e ective di usion rate does not approach the e ective di usion rate for
two parallel plates. In particular, we examine columns of narly rectangular cross
section having both non-parallel walls and asymmetric endsf arbitrary shape. In
particular, this includes geometries common to microfabrcated gas chromatography
columns. We develop an expression for the e ective di usivly showing the contri-
butions from the walls and the ends, and the relative importance of each. We also
discuss the large e ect that a small nonuniformity in the mid dle of the cross section
can have on the e ective di usion rate, and how the ends of thecross section can
be modi ed to control the e ective di usion rate.

Key words: Taylor-Aris dispersion, gas chromatography, high aspect atio, end
e ects

1 Introduction

In the classical papers by G. I. Taylor [3] and Rutherford As [4], they considered the
advection and di usion of a solute down a straight tube whoseliameter is much smaller
than its length. They showed that the solute is advected dowthe tube with the average
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velocity of the uid in the tube, and that its concentration pro le satis es a one dimensional
advection di usion equation with an e ective di usion constant that has the form

Deit = D 1+ KPe? : (1)

Here D is the di usivity of the solute, K is a constant that depends only on the geometry
of the cross section of the tube, an®e is the Reclet number

Ru
Pe= —:

D
HereR is the radius of the tube, andd is the average velocity of the uid in the tube. One of
the most striking features of this formula is that for large alues ofPe, the e ective di usion
coe cient is inversely proportional to the physical di usivity. In [5], a similar analysis is used
to lay the foundations for capillary gas chromatography.

In [2], Doshi, Daiyai, and Gill considered Taylor-Aris disprsion in rectangular cross sections
of large aspect ratio and came up with a surprising result, vikh we now summarize. Suppose
the rectangular cross section has heighi,, width W, and de ne the inverse aspect ratio as

_ Ho,
= 3

Consider two dimensional Taylor-Aris dispersion betweemb parallel plates. Intuitively, we
might expect that the e ective di usion coe cient for a rect angular channel approaches the
e ective di usion coe cient for the case of two parallel plates as the inverse aspect ratio
approaches zero. These authors showed that this is not thesea In particular, the constant
K in (1) is about 8 times bigger for a rectangular cross sectioof arbitrarily high aspect
ratio as it is for two parallel plates. This phenomenon was sicovered independently in [6]
and applied to the case of dispersion by turbulent ow in [1].

In [7], Guelle, Cox, and Brenner discovered a related phenenmon. For a smoothly varying
cross section that has a high aspect ratio (such as an elongatellipse), the constantk in
(1) is proportional to 1= 2. This is equivalent to saying that the appropriate Reclet mmber
to use in (1) is the Reclet number based on the width of the css section, not on the height.
For example, if we take a rectangular cross section of largepeect ratio, and we inscribe
an elongated ellipse in it, the constanK for the inscribed ellipse will be on the order of
1= 2 times larger than the constant for the rectangle. This phemoenon is also discussed in
[8] and [9]. A similar phenomenon was noted by Golay [6], whaimted out that in a large
aspect ratio channel, even a mild deviation from a rectangai geometry could drastically
e ect the constant K .

With the exception of the papers by Dutta and Leighton [10{1P the papers concerning
Taylor-Aris dispersion in large aspect ratio channels canebgrouped into two categories.
The rst deal with cross sections where the middle part of theross section is not close to
rectangular [9,7]. In this case the constari is proportional to 1= 2, and any end e ects will
give only a small correction to this value. The other class gfapers deal with the specic
case of a rectangular cross section. The papers in this clg$3{16] all are concerned with
the e ects of the ends. They discuss the end e ect by doing asyptotics on the analytical
expression (an in nite series expansion) for the constar€ in a rectangular channel.

The purpose of this paper is to present an analysis of Tayl@ris dispersion in nearly rectan-



gular cross sections of high aspect ratio. By nearly rectanigr, we mean that the geometry
of the walls of the middle of the cross section deviate onlyigtly from the rectangular case,
but near the ends we may deviate signi cantly from a rectandar cross section. We do not
assume the ends are symmetric. This particular geometry isportant for microfabricated
gas chromatographs, and hence we believe it deserves spedtantion. We will present the-
ory combining the e ects upon the dispersion of the geometrgf the middle of the cross
section with the e ects of the ends of the cross section, anti@v the relative importance of
each.

Our paper o ers contributions that complement and extend tke results in [10{12]. In [12],
the authors consider situations similar to those discussed this paper, but develop their
analysis using heuristic arguments based on an analogy betn the layer of slowly moving
uid at the ends of the channel and the thin layer of stagnant uid in gas chromatography
(see equations 14 and 15 in [12]). Although they showed catesiable insight in writing down
these equations, essentially without derivation, we inst&l develop our analysis in a more
rigorous fashion without recourse to heuristic argumentsiowever, we also show in Appendix
B that our results agree with theirs for the case of nearly ré@ngular cross sections, thus
providing support for their conclusions. Additionally, ou analysis drops their restriction that
the end e ects at both ends be the same.

In [10], Dutta and Leighton discuss nearly rectangular crgssections and present numerical
results to demonstrate the e ect of modifying the geometry tathe ends of a rectangular
cross section. In particular, they show that by suitably moifying the ends of a rectangular
cross section it is possible to reduce the dispersion to thelwe for a parallel plate. In their
example they have the ends of the tube bulge out as in gure 2(aFor a symmetrical cross
section, in order to achieve the nearly parallel plate redul is necessary to have the average
velocity in the channel be the same as the average velocity fitne parallel plate case. One
would suspect that this requires that the ends bulge out. Thagh this result seems intuitive,
we feel that it merits a proof, which we show irx5.

We now discuss the source of the large e ect that the end regi® and small distortions of the
middle region can have on the dispersion coe cient. Away frm the ends of the cross section,
the ow exponentially approaches plane Poiseuille ow. Thais, we haveu(x;y) ! uPP(y)
for x away from the ends, wheraiP’(y) is the velocity pro le for Poiseuille ow between two
parallel plates. When we compute the average velocity of the ow in the channel we nd
(see (22) inx4) that

u=U" UP( .+ r)+O(?:

Here U™ is the average velocity for Poiseuille ow between two partl plates, and | and
r are constants that depend on the geometry of the leftL(), and right (R) end regions,
but not on

Assuming the mid section of our cross section has paralletlsiwalls, we will see that (see

(39))

i L R+ A
K= KPP+ L 3 R+ 0():

Here KPP = ﬁ) is the e ective di usion coe cient for Taylor-Aris dispers ion between two
in nite parallel plates. Note that the e ect of the end regions does not vanish even in the
limit as ! 0. Since the quadratic form 2 L r+ 2 is positive de nite, the only way

we can make the end correction vanish is if both, and g are identically zero.




In X5 we show that the only way we can make, (or g) vanish is if the end bulges out so
that the height in the end regions exceeds the height in the ihille region (as in gure 2(a)),
and also in [10]. In the case of a symmetrical cross sectionemd | = g, this requires
that the ends be modi ed such that the average velocity in thehannel is the same as the
average velocity between two parallel plates. One might beempted to think that in the
non-symmetrical case, the dispersion could also be redudedthe parallel plate value by
having the average velocity in the cross section be the same the average velocity for the
parallel plate case (for example, by having only one of the @& bulge out, as in gure 2(b),
while keeping the other end as in a rectangular cross sectjpiut we show that we can
reduce the dispersion to its parallel plate value only if bét | and R vanish, and hence
only if both ends bulge out.

In this paper we also analyze the case where the walls of theddlie of the cross section
have a small deviation from the parallel plate geometry. Aiough they do not consider this
case speci cally, the results in [7] and [9] suggest that ndildeviations from the parallel plate
geometry could signi cantly change the constanK . This is consistent with the comments
made by Golay [6], although his discussion of this point wasgrlited to the case where the
walls have a constant slope, and his remarks were both exceedly brief and confusing.

We consider the case where the height of the cross sectioni@aras a function ok as
H(x)= Ho(1+ (Xx=W)):

In X7 we show that assuming and are both small, we have

2 L r+ 2 2
K KPP+ L 3 R+ Ky 1 r)-+ Ko
HereK, is independent of , , |, and g. The constantKi( _; Rr)isindependent of and

, and is linear in | and . This equation shows both the e ects of the ends of the cross
section, and the e ects from variations in the middle of the wss section, and the relative
e ect caused by each. We see that even ifand are both small we can in fact get a very
large change in the e ective di usion constant due to a smalariation in the cross section.

This work was largely motivated by problems in gas chromategphy where microfabrication

techniques have made it convenient to manufacture gas chratography channels of nearly
rectangular cross section. In this situation, we would likeo keep K as small as possible.
In particular, we show an end correction inx 8.2 that essentially recover& = KPP for a

column of rectangular cross section. The results given inithpaper should be of immediate
interest to the gas chromatography community.

We now summarize the contents of this paper. Ix2 we will discuss how to compute the
e ective di usion coe cient for an arbitrary shaped cross section. Although this result is

not entirely new, we believe that our formulation is simple mough that it deserves being
written down, and is necessary for understanding the ressltfor nearly rectangular cross
sections. The derivation we give of how to computK is similar to that given in [17] where
the authors Fourier transform in the axial direction, but ou results are applicable to any
cross sectional shape, and our derivation is more succinagice we are only concerned with
the long time behavior of the solution (e.g., the value o).

In x3 we compute the e ective diusion coe cient KPP for ow between parallel plates.
In x4 we discuss how to compute the average velocity in a channéln®arly rectangular



cross section, which we will need for later sections. We sdwt the average velocity in a
wide channel di ers from the average velocity in an in nite{y wide channel by an amount
that is proportional to = Ho=W. In x5 we prove that in order to have | vanish, it is
necessary to have the ends bulge out. k6 we give the results for mid-sections of constant
height ( =0), and in x7 we give the results for slowly varying mid-sections & 0). In x8,
we con rm our results through direct numerical experiment.n Appendix A we give some
details of the calculations that were omitted in the main parof the paper, and in Appendix
B we compare our results to those in [12].

2 Taylor-Aris Dispersion for Arbitrarily Shaped Cross Sect ions

We consider the advection and di usion of a solute down a catun of constant but arbitrary
cross section. We denote the cross section of the column by the boundary of the cross
section by @, the area of the cross section as\, and the axial coordinate byz. The velocity
down such a column is unidirectional and independent af In particular the velocity is given
by u =(0;0;u(x;y)) where

rsu= %gin (2a)
and
u=0on @ : (2b)

Here r 2 represents the two dimensional Laplacian (ignoring the component), is the
dynamic viscosity of the uid, and p is the pressure in the uid.

Suppose a species with concentratio@(x;y; z;t) is being advected and di used down the
column. The evolution of the concentration distribution isgiven by [3]:

@cC An@C_ o

@t-'- U(X,y)@z— Dr “C; (3a)
@C_ _
@n Oon @ (3b)

The theory of Taylor-Aris dispersion shows that, assuminghe length of the column is much
greater than the characteristic length of the cross sectipthe evolution of the concentration
pro le is very well approximated by the one dimensional adwion di usion equation

@t "er P @p

Here U is the average value of the velocity, andD.; is an e ective di usion constant that
has the form given in (1). There have been numerous derivatis of this result [4,14,18]. We
give an alternative derivation that is an extension and simpcation of the arguments used
in [17].

Our derivation is based on the fact that the equations (3) ardinear and invariant under
arbitrary shifts in both t and z. The invariance under shifts inz make the equations amenable
to an analysis by Fourier transforms. In particular, if€(x; y; k; t) is the Fourier transform in

@c, u @c_ ac (4)



z of C(x;y; z; 1), then for each value ok, € satis es the evolution equation

%t+iku(x;y)é =D r %C k2¢€ (5a)
along with -
@ -ome: (5b)

Due to the time shift invariance of these (and our original) @uations, we can solve (5) by
expanding € in terms of functions of the form exp ™t (M (x;y: k), where (™ satis es
the eigenvalue problem

(m) (m) +ikU(X; y) (m) — D r g (m) k2 (m) : (68.)
@™ _ .
a@n - Oon @: (6b)

If  (M(Kk) is the m" eigenvalue as a function of the wavenumbek, then for the m = 0
mode, this eigenvalue problem has the eigenvalué’ (0) = 0, along with the eigenfunction
©(0) = 1. All of the other eigenvalues will be on the order of

™ ()= O(2); m> 0,

whereR is a characteristic length of the cross section. This showsat as long asD=R? > 1,

all of the modes withm > 0 will be rapidly damped out. Note that the time it takes for
the concentration peak to move a distancé down the column ist = 1=0. This means that
the modes withm > 0 will be signi cantly damped out if Pe R=I 1. Thus, as long as
the Reclet number is not too large, and the length of the colenn is much greater than its
characteristic diameter, we are justi ed in ignoring all bu the mode m = 0. Physically this

means that the pro le will become nearly uniform across a css section.

When k 6 0, we get similar behavior. However, in this case then = 0 mode will also be
signi cantly damped if tDk 2 1. If as in the last paragraph we set = |=U, we see that
any mode such thatR?k?  Pe R=I will be signi cantly damped out. The main conclusion
from all of this is that when analyzing the concentration prde down a long but very thin
column, we need only concern ourselves with the smélllimit of the mode m = 0. For ease
of notation, we will refer to the eigenvalue of interest mehg as (k) (dropping the zero
superscript). We will now use subscripts to denote the expaion of this eigenvalue in terms
of a Taylor series ink. In particular if we write the expansion

(K)=i 1k+ oK%+ :::; (7)
we can see that the one dimensional di usion equation

ec @c_  a@c
@ ‘@z ‘@
satis es the same dispersion relation as (4). That is, we hav

u= 1 and Det = 2.



A rigorous asymptotic analysis shows that as a solute is adited and di used down a long
narrow column, the concentration becomes nearly constantmss a cross section, and the
value of this concentration is governed by the above one dim&onal advection di usion
equation. It should be noted that the above equation governthe long time behavior of
the concentration pro le. It does not, for example, resolvehe fast initial transient that
occurs if you place a species in the column with a nonunifornorcentration distribution
across the cross section of the column. Including higher emdterms in (7) will lead to a
one dimensional partial di erential equation that has higler order spatial derivatives, and
that is more accurate for shorter time scales. For a more cotege discussion of the transient
behavior in Poiseuille ow, see [17] and [19].

The above arguments show that the behavior of our solution nabe well understood by
determining the parameters ; and . In this paper when we compute the Taylor-Aris
dispersion coe cient numerically, we compute the eigenvak (k) for a few values ofk
that are small, and then do a polynomial curve t of this funcion to determine ; and

2. Alternatively, one can use the perturbation theory of eigevalues to determine these
guantities.

We omit the details, but the perturbation theory of eigenvalies shows that

1= U
and
= D Dz'r 2 dA; (8)
2= A J 1] ;
whereU is the average value of the velocity, and is the solution to
Dr 3 1=(u(xy) u; (9a)
@ _ _
@n_ Oon @ (9b)

This solution is uniquely determined up to a constant, whicldoes not in uence the value of
2.

This is the expression for , that will be used in our analysis of rectangular and nearly

rectangular cross sections. From (9) it should be clear that, is proportional to g. The

form of the above expression for, shows that when we put our equations in dimensionless

form, the e ective di usion coe cient has the form described in (1).

3 Taylor-Aris Dispersion Between Two Parallel Plates

If our cross section is a rectangle with a very large aspectti@ we might expect that the
e ective di usion constant would be nearly equal to that catulated for the case of dispersion
between two in nitely large at plates. In the next few sections we will see that this is in
fact not the case. As a preliminary to those sections we wilatculate the e ective di usion
for the case of in nite parallel plates.

We assume that the plates are a distancel, apart and that the average velocity between
the plates isU™. The well known solution for ow between parallel plates shes that the



velocity pro le is given by
UPP(y) = UPPf PP(y=Hp);
where
fPP()=6 1=4 2 : (10)
In this case we get
pp — UDD.
1 .

The rst order term  f* in the eigenfunction satis es

2 P TIPP
= 4PP .
D a2 Y (y) U7
bp
W =0aty= Hy=2

This has the solution
P(y) = Pe HoGPP(y=Ho);

where , A .
GPP( ) = 2 2 4—80; (11)
and 07H,
Pe= =3
In order to evaluate , using (8) we are more concerned with the quantity
41 pe 9"P(y=Ho); (12)
dy ’
where 4GP
()= (13)
Substituting this solution into (8) we nd
= D 1+ Lpe (14)
210
Using our de nition of K in (1), we see that
1
KPP = 210 (15)

4 The Average Velocity in High Aspect Ratio Cross Sections

In order to compute the e ective di usion coe cient it is nec essary to compute the average
velocity in the column. Although the average velocity in a lgh aspect ratio cross section is
nearly equal to the average velocity between two parallel qiles, we will see inx 6 that this
small discrepancy can lead to an order one change in the e a& di usion coe cient.

We limit the results of this section to the case where the hdig away from the ends of the
cross section is constant. Irx7 we extend this to the case where the height in the middle of
the cross section changes by a small and slowly varying amaun



As in the previous section,U™ will denote the average value of the velocity in the parallel
plate approximation. If U is the true average value of the velocity, we can write

14 14

u= 1 udA= L (u U™ dA + U™ (16)

The velocity pro le for Poiseuille ow through a rectangular cross section can be written
down in terms of an in nite series. This solution shows thatdr a cross section of height
Ho and width W that has a large aspect ratio Ho=W 1), the velocity approaches the
parallel plate pro le exponentially fast as we move away fro the ends. Signi cant di erences
between the parallel plate and true velocity pro les only eist in a region that is on the order
of Hy near the ends. For a channel where the ends are not perfecttyagght, we see similar
behavior, namely an exponentially fast approach to the pallal plate approximation as we
move away from the ends.

Since the velocity is exponentially approaching the paral plate prole, to a very good
approximation, we do not need to compute the integral aof u™ except near the ends. In
order to compute this integral near the ends we can isolate @aend region. To simplify the
explanation we show how to do this for a rectangular cross $en, and then note how the
results are easily generalized to cross sections that are nectangular.

For a rectangular cross section, we can analyze the end regy considering the semi-in nite
region | de ned by

(x;y)2 L1 x W=2andjyj Hop=2
In this end region we consider the problem

@p
r2u= @SII’] L
u=0on @ ;

ul uPP(y)= U™fPP(y=Hy) asx !1

In order to compute the average velocity we need to computedhintegral
z z z
L= (u U™dA= vdA+ uPP(y) U™ dA; (17)
L L L
where
v=u UPP(y): (18)

Since bothu and uPP(y) satisfy the Poisson equation with the same constant rightdnd side,
and u vanishes on the boundary, we have

r2v=0; (19a)
v= uP(y)on @ ; (19b)
vl Oasx!1l : (19c¢)

If we set
v(x;y) = UPPR(X;Y)



where
(X;Y)=(x+ W=2y)=Hy;
then we have

r2¢=0;: (20a)

¢= fPP(Y)=0for X OandY = 1=2 (20b)
¢= fPP(Y)for X =0andjY j< 1=2; (20c)
¢! OasX !l : (20d)

In terms of these dimensionless variables we can write

L= HZU™ ; (21)
L= ¢(X;Y)dX dY = (FPP(y) 1) dX dY:
1=2 0 1=2 0

The constant | is clearly dimensionless.

The computation of | for a rectangular cross section can be found in several loicais
including [13] where it is shown that

96 % 1
L 5. (2k+ D)5 :3151
Almost identical arguments would apply if the cross sectiomere not rectangular, but for
example had a semi-circular section attached at= W=2. In this case the region | would
be a region that properly gives the geometry of the end near=  W=2, but ignores the
right end, replacing it with a semi-in nite region of constant thickness. In the general case
(17), (19), and (21) still hold.

A similar analysis holds when we consider the velocity pragl on the right side of the cross
section. It follows that our expression for the average vedity can be written as

T7PP
o= Upp U Hg

(L+ Rr):
Note that A  HyW, so that to rst order in we have

u=U0"% U"( .+ &) (22)

5 A Necessary Condition for the Vanishing of L

In this section we will show that in order to have | vanish, it is necessary that the left end
bulges out as in gure 2(a). That is, it is necessary to havgy j> H ;=2 somewhere in the
end section. Identical results apply for r. A modi cation of this type to increase the uid
velocity in the end regions was proposed in [10] and was shoterreduce the dispersion. We
extend the results of [10] by proving below that such a modiation is, in fact, a necessary
condition.

10



Using the expressioruPP(y) = U f PP(y) where f PP(y) is de ned in (10), we can show that

1 1 _ .
- T pp ;2 pp + pp pp -0-
> o jruPPjc U u U 0: (23)
Using the fact that r 2uPP = 12, andr v =0, we can write (17) forl_ as
z z
.= — uPPr 2y vr 2uPP dA + uP? U™ dA:
12 | L
Using Green's identity, this gives us
L=+ ’ @Y v@! dA + ’ uP U™ dA:
T 126,  @n  @n ! '

We now use the fact thatu vanishes on the boundary, and henoe=  uPP on the boundary.
This allows us to write

z ! z
1 @ @v PP
L= = uPP—— v— dA+ ubP U™ dA:
T 12 e, @n ~@n ]
Using Green's identity, we can write
z z
Qv : 5
v—dS = rvjc dA;
@. @n L : J
z @ z z
uPP=_—ds = jr uPPjZ+uPPr 2uPP dA = jrouPPj? 120 dA
@ L @n L L
It follows that we can write
1 g 2 g 1 2 pp
_ 1 . . 1. w2 o .
I 7 LJer dA + L 12Jru U dA: (24)
If we divide (24) by two, and add the result to (17), and use (23 we get
z z
3 1
|, = — i i2 A+ A: 2
Sl >4 LJrVJd Lvd (25)

We now use the fact thatuPP(y) > 0, if j y j< H (=2. That is, the function giving the parallel
plate velocity is always bigger than zero if we evaluate it Iiween the parallel plates. Our
boundary condition forv in (19) shows that if we always have y j< H (=2, then v is always
negative on the boundary. The maximum principle for Laplace equation now implies that
v is always negative. In this case our expression (25) is clanegative. This shows that if
the end does not bulge out, theri is negative, and hence | is positive.

6 Channels with Mid-Sections of Constant Height

Here we discuss how to compute the e ective di usion coe ciat in the case where the cross
section is constant away from the ends. We discuss the casesnehwe have a small and slowly
varying deviation from a constant cross section in the nextestion.

11



We assume that away from the endg = W=2, the cross section has constant heigl.
Near the ends, we can have quite arbitrary shapes. We will asse that Ho=W 1. We
will also utilize the dimensionless rescalings= x=W and = y=H,.

In order to use (8) to compute ,, we need to compute ; that satis es (9), which we write

as ]
@ 1 @ 1. _ . — . T7PP T7PP — .
D ax + @y u(x;y) u= u(x;y) U™ + UTS(x=W); (26a)
where 0P o
S()= TG (L+ R): (26b)

In the equation for ; we have split the right hand side up into the termu(x;y) U™ whose
integral across the slicex = constant vanishes (if we are su ciently away from the ends), and
a source termS(x=W) whose integral across the slice does not vanish. In the casehand,
the function S( ) is a constant, but we have chosen to include the functionaleggendence on
since a similar analysis will hold in the next section wher8( ) will not be a constant.

Away from the endsx = W=2 of the cross sectionu(x;y) will be very close to Poiseuille
ow between parallel plates a distanceH, apart, Assuming that is small we expect that
the derivatives with respect tox of ; will be much smaller than those with respect toy.

Furthermore, sinceS( ) is small, we might guess that the leading order term in (26}igiven

by g
D—— = UPP(y) U™
@y (¥)
along with the boundary conditions%y =0at y= Hy=2. This has the solution
1(xy) = Py)+ F(x); (27a)
where
1°(y) = Pe HoGP(y=Ho); (27b)

and GPP( ) is de ned in (11).

Our paradoxical behavior arises from the fact that the fungébn F(x) in (27a) is 1= larger
than the term P. This is related to the general high aspect ratio case [7] wieethe leading
order term is proportional to 1= 2. The necessity for having a leading order term of=1 can
be seen when trying to compute the next order correction to th term (see Appendix A).
Intuitively it arises from the fact that if we include the souce S(x=W) in (26), then we
cannot solve this equation if we ignore the partial derivaties with respect tox on the left
hand side of this equation. The more rigorous perturbationhieory shows that the leading
order term F (x) must be chosen so that the derivatives on the left cancel th&urce term
U™S(x=W) on the right. That is,

DF %= UPs(x=W): (28)
This has the solution
T™ Zx !
Fix)= — S(x=W)dx + HoCin; ; (29)
D w=2
which can be written as
Fix) = Pe (x=W); (30a)

12



where I

1 Zx:W
(x=W) = - , S()d + Ci : (30b)

At this point the constant Ci,; is not known, but we now show that

Cint = L- (30c)

To do this we de ne the regions (s) to be the part of our cross section that hax  s. If
we integrate the equation
Drji=u(xy) U
over the region (x), and use the fact that%] vanishes on the boundary of , we get
z z
@
D ——dy= u 1) dxdy:
X= const @X y (x)( ) y
When x is in the interior of the cross section, (27a) shows that theeft hand side of this
expression is clearly approachinBH oF x). It follows that in the interior of the cross section
we have Z z

DH oF 4x) o U U™ dxdy+ . U™ u dxdy: (31)
X X

Sinceu is asymptotically approachingU™ asx moves away from the end region, the rst
integral on the right is well approximated by

z

o U U™ dxdy LUPH2: (32)
X
The second integral can be approximated by
z _ _z,
U™ u dxdy HU™ S(x=W) dx: (33)
( x) w=2

Note that in making this approximation we have assumed thathe height of the channel is
everywhere given byHq, which is not true in the end region, but ignoring this fact gres us
an error that is on the order of . Combining (31), (32), and (33) we see that in the interior
we have

Z ..
P xX=W
Fix) Pe _+ -2 S()d:
1=2
If we compare this to equation (30c), we see that we must ha@,; = L in order to have
these two expressions agree. Now that we know th&,; = L, We can compute (x=W):
1
()=(C .+ Rr) +§ L- (34)

We now argue that when computing the integral (8), there is amsall contribution to the

integral coming from the end regions, but the main contribubn comes from the interior
region. From (26), we see that the function ; in the end region is on the order of ; =

O(Pe Hy). The square of the gradient in the end region will be on the der ofjr 4 j?=

O(Pe?). The integral of the square of the gradient in the end regiomwill be on the order
of Pe?H2. We will now see that the integral ofj r ; j? in the interior is on the order of
Pe? HoW, which is 1= bigger than the integral in the end region.
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Equations (27a) and (30a) show that in the interior we have

it 17 Pe (gP(y=Ho)*+( (x=W))* :
This term is on the order ofPe?, so when we integrate it over the whole cross section, we
get a term that is on the order ofPe?HoW, which is what we claimed in the last paragraph.

Using this form to compute the integral in (8) we get

»,= D 1+Pe’K ;

where 1
— 4+
210" (352)
Z 1=2 2 + 2
= 2()d = L R° R, (35b)
1=2 3
We emphasize that the e ect of the ends gives an order one cabution to the e ective
di usion coe cient, even in the limitas ! O.

7 Slowly Varying Mid-sections

In this section we extend the results of the last section to alude cross sections that have
slowly varying mid-sections. The analysis is almost idemal to the one in the last section,
requiring only that we use a di erent function S( ) for the source term in equation (30c).

We assume that away from the ends, the height of the channelnes like
H(x)= Ho(1+ (x=W)); (36)

wherej ] 1. We also assume that away from the ends= 1=2, ( ) and its derivative
are both order one or less, and that = Hy,=W 1. In other words, we have a nearly
rectangular channel that has a small and slowly varying deadion from a rectangular shape
in the middle of the cross section, and possibly a large deti@n near the ends (for example,
semi-circular ends).

In this case, the function ; satis es

D %; ¥ %91 CSuky) U= uy) U0+ UeS(xw) (372)
where _
S(X=W) = %; (37b)

U(x) denotes the average value of the velocity across the slicktioe cross section withx
held constant: z
U(x) = u(x;y) dy: (37¢)
nst

X=Co

In the last sectionU(x) was equal toU"”, but in this section it will vary slowly in the channel.

14



We need the formula forS( ) in the middle of the channel. To derive this we use the fact
that the velocity pro le for ow between parallel plates a distanceh apart is given by

_ @pl ,_
u(y) = @2 ——(h*=4  y?%):
Integrating this expression fromy = h=2 to y = h=2 shows that for a given value of the

pressure gradient, the average velocity is proportional tthe square of the distance between
the plates. In our channel where the thickness varies slowlyith x, the average velocity
across the slice of the channel witlk constant will be very nearly

H (X)

0

UPP(x) = —2U0P = UP @+ (x=w))?:

Here U™ is the average velocity in plane Poiseuille ow where the ples are a distance
Ho apart, and the pressure gradient is the pressure gradientdhis being imposed on our
system. Assuming that is small we have

UPP(x) U™ +2 U™ (x=wW): (38)

In order to compute S( ) we need to calculate the average velocity in the channel. imhat

follows, we will assume that the function ( ) is de ned so that it properly gives the behavior
in the interior of the channel, but makes no attempt to modellhe pro le in the end regions.
For example, if we had a rectangular channel that varies liagly in x in the interior region,

but has semi-circular end regions; we do not attempt to havéheé function ( ) capture the

behavior in the end regions. For this reason, we assume that( ) is small on the whole
interval j j 1=2. Although it does not capture the behavior in the end regignve assume
that it is still de ned in that region.

We can write

_ 1 — 1
u U'°'°:K u(x;y) U% dxdy = +(l1+12);
where
Z
1= (u(x;y) UPP(x)) dx dy;
Z
I, =  UPP(x) U™ dxdy:

The rst of these integrals can be evaluated just as we did iR4. In particular, we assume
that the integrand goes to zero exponentially fast as we mowsvay from the ends. We only
need to compute the integral in the end regions. Doing this wget

= HJUP( L+ Rr);

where | and R would be the same constants we would get when the channel aptotes
to a channel of constant heightH,. In doing this we are ignoring terms that are on the order
of H2U™.

The integral 1, can be computed by noting that away from the end regions we hav

Z
UPP(x) U™ dy U™He2 (x=W):

X= constant

15



This expression is not quite right in the end regions, but whrecomputing | ,, the contribution
from the end regions is small, so to a very good approximatiome have

Z =

_ 2 _
1, U"H, 2 (x=W)dx =2 U™H,WC ;

where
Z 1o

C = ()d: (39)

1=2

Note that both I, and |, are small, so when we divide them by if we make the approxi-
mation A HoW, we get an error that is second order in and . That is,

%(|1+|2) U™ (L+ r)+2 UC:
This shows us that o
Vi
Vi 1 (+ r)t2C: (40)
Using the de nition of S( ) in (37b), (38), and the expression in (40), we get

S() 2 ()+ ( .+ Rr) 2C forx away from the ends (41)

As in the previous section, the solution ; in the interior can be written as
1%y)  UPHGPP(y=Ho) + F(x);

whereF %is given by (29). We can use the same argument as in the last &g to show that
Cit = L. This implies that we can write

Fi{x) = Pe (x=W);

where 1
()=-B()+( .+ Rr) t5 L (42a)
and where 7
B()=2 (s)ds 2( +1=2)C: (42b)
=2
As in the last section we have
2 = gp P62 ; (43a)
where 7
1=2
- 2(s) ds; (43b)

1=2
and 5P is given in (14). Our expression for , implies that

K = KPP+ (44)

We illustrate this formula with two examples. Suppose that w have a symmetric channel
with a quadratic variation in height. In this case we have ()= 2, and [ = g =
Substituting these expressions into (43b) we get

6302 42 = + 2=2
Pe? :
€ 1890

(45)
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If we set =0, we get the result
2

= Pe?—:
3

We can minimize this expression by setting= =21 . If we do this we get

2

= Pe’—
10
In order to facilitate comparison between our results and thse in [12] we give the example
()=4 2 1thatis used in that paper. Assuming that . = g = , we get
2 4 8 2
= — +

3 45 9452

This agrees with equation 29 in [12]. (We note that, , and K = KPP+ here are called,
respectively, , , and f=210 in [12]).

As another example, we suppose that we have a linear variation the height of the cross
section. This gives us |

= Pe? —+ _—— (46)

8 Numerical Results

In this section, we rst numerically con rm the e ective di usion coe cients for the high
aspect ratio models developed in the previous section. Weeth explore a modi cation of the
ends of a channel of rectangular cross section that minimgéhe end e ects discussed ix 6.
Finally, we numerically minimize , for a cross section with asymmetric ends.

8.1 Model Con rmation
In this section we con rm via numerical experiment the exprgsions in (45) and (46).
e S N s

(a) Linear side walls. (b) Quadratic side walls.

Fig. 1. Cross sections of nearly rectangular columns with hight Ho and width W.

We rst consider a model with linear side walls. Let the heighbe described in (36), with
()= ,and =0:05. The correction to the e ective di usion of the parallel date case is
given by (46). An example cross section is shown in gure 1(a&e x the height Hy, = 1 and
numerically compute the velocity pro le for various valueof W, xing the Reclet number to
bePe = 1. We then determine the eigenvalue (k) for several values ok, and do a polynomial
t of (k) to determine ; and ,. Theoretical values of from (46) are compared with
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Aspect Ratio 2 Numerical Theoretical Relative Error

1 1.0084 -0.0295 0.0000 354.7987
10 1.0451 0.0072 0.0083 0.1355
20 1.0695 0.0316 0.0333 0.0507
40 1.1569 0.1191 0.1333 0.1069
80 1.5422 0.5043 0.5333 0.0544
160 3.1154 2.0775 2.1333 0.0262
320 9.6658 8.6280 8.5333 0.0111

Table 1

Numerically determined values of , for various aspect ratios for a cross-section with linear sie
walls. The numerical correction value is compared with the heoretical correction value from
equation (46).

Aspect Ratio 2 Numerical Theoretical Relative Error

1 1.0086 -0.0293 -0.0007 41.1190
10 1.0291 -0.0088 -0.0065 0.3574
20 1.0261 -0.0118 -0.0119 0.0116
40 1.0191 -0.0188 -0.0195 0.0376
80 1.0154 -0.0225 -0.0222 0.0135
160 1.0571 0.0192 0.0234 0.1785
320 1.3428 0.3050 0.3177 0.0401

Table 2

Numerically determined values of , for various aspect ratios for a cross-section with quadrat
side walls. The numerical correction value is compared withthe theoretical correction value from
equation (45).

numerical values of in table 1, and the relative error tabubted. Note that the theoretical
results are valid only in the case of a large aspect ratio.

Of interest in this model is that , approaches in nity with W, whereas a column with a
perfectly rectangular cross section (corresponding to= 0) has , approaching a value close
to one. This rapid growth in , is con rmed numerically in table 1.

We next consider a model with quadratic side walls. Inthis s, ( )= 2, and the correction
to the e ective di usion of the parallel plate case is givenm (45). An example cross section
is shown in gure 1(b). We have again chosen = 0:05, and xed Pe = 1 and Hq = 1.
Following the same procedure as before, we numerically comg the velocity pro le for
various values oW . We then determine the eigenvalue (k) for several values ok, and then
do a polynomial t of (k) to determine ; and ,. Theoretical values of from (45) are
compared with numerical values of in table 2, and the relatve error tabulated. Again, note
that the theoretical results are valid only in the case of a tge aspect ratio.

Of interest in this model is that , again approaches in nity with W, but does so much
less slowly than for the linear model. This reduced growth in, is con rmed numerically
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(&) Symmetric ends. (b) Asymmetric ends.

Fig. 2. Cross sections of nearly rectangular columns with hight Hg and width W with with one or
two bulb shaped ends of radiusr.

in table 2. Also note that from (45), there is a sign change inhie correction term, meaning
that for a particular aspect ratio, the expected value of , is the same as for a perfectly
rectangular cross section. This change of sign is observedtable 2. As we would expect,
there is an increase in the relative error near this criticgboint, although the absolute error
remains quite small.

8.2 Minimization of End E ects

In this section, we consider modifying the ends of a channel iectangular cross section to
minimize the e ects discussed irx 6. In particular, we seek an end con guration such that
in (35) is essentially zero.

Following a hint given in [6], we consider using a \bulb" on tle ends of the channel cross
section, as shown in gure 2(a). We set the heightdy = 1 and the width W = 100. For a
circular bulb of radiusr = 0:7, we numerically observe that the term in (35) is Q00039.
In e ect, this high aspect ratio channel has the e ective diusion coe cient of two parallel
plates, and the e ect of the ends has been removed.

8.3 Asymmetric Ends

Here we consider a cross section similar to that in gure 2(aput with the right end a bulb
of radiusr and the left end rectangular. We set the heighHy = 1 and the width W = 100.
We seek to minimize , by varying the radiusr, which means minimizing in (35). x5 tells
us that since the left end of the cross section does not bulgetdike the right end, we can
never eliminate the end e ects (i.e., make = 0). Numerically determined values of , are
shown in table 3 as a function of. We see that the smallest observed value of occurred
forr = 0:63.
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r 2
0.61 | 1.0298
0.62 | 1.0295
0.63 | 1.0293
0.64 | 1.0294
0.65 | 1.0298
0.66 | 1.0305

Table 3
Numerically determined values of , for various values of the radiusr for a cross section with
asymmetric ends. The minimum value of , observed occurred for = 0:63.
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Appendix A

The purpose of this appendix is to give a more rigorous justiation of the fact that the
function F(x) must satisfy (28) in the interior region of the cross sectim To simplify the
discussion, we consider the case where= 0; a similar discussion holds for 6 0.

To do this we de ne the dimensionless variables
= X:W; = y:HO; = 1:H0:

In the interior region, the velocity is very nearly equal to he parallel plate velocity uPP(y).
In terms of the dimensionless variables, the equation for in the interior can be written as

@ . @

@2 @ =Pe(fpp() 1)+Pe(L+ R);

along with the boundary conditions

%=Oat = 1=2:

We now do a formal perturbation expansion assuming thatis small. In particular we will
assume that

)= 2 0 )* o )+ A )+

We have chosen to start the expansion with-1 because, as we will see, this is necessary in
order to satisfy the equations.
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If we collect powers of £, we see that we must have

This implies that we have

1( )=F():
As we shall see, the fact that ; is independent of is in fact the main result of this
appendix.

If we now carry out the expansion to zeroth order, we nd that

@

2= Pe(fP() 1)

@®

O=0at = 1=2

®

This implies that
of; )=PeG®( )+ F():
Finally collecting the powers of , we nd that
2
¢F, @ .
d 2

=Pe( L+ Rr);

@2
@,
—=0at = 1=2

@

In order to be able to solve for ; we must satisfy the compatibility condition
|

Z 1= 2 '
dF Pe(L+ R) d =0:

1=2 d?2

This implies that
2

F()=Pe( .+ R)E"'Al + Ao:

We could continue in this fashion, to determine the terms to igher and higher order, but
this is su cient to see that the form we guessed inx6 is in fact correct. In particular, it
is not necessary to know the functiorF( ) in order to compute the limit of the e ective
di usion coecientas ! O.

Appendix B

In this appendix we brie y outline how to compare the resultan [12] to those in this paper.
We rst explain the proper relationships between their and ar notations. What they call f
is related to what we callK by

sz:

22



We useh(x) for what they call h?(x), g(x) for what they call g°(x), for what they call
d=W, v(x) for what they caII u’?, V for what they call U and for what they call . Here

we are assuming that | = g = , asis assumed in thelr paper. Equation 14 in [12] states
V(X) |
1 1=2)= k; (B1b)
_:2 gx)h(x)dx = (g( 1=2) + g(1=2)): (Blc)

Readers of [12] may be confused because (B1b) and (B1c) haeerbincorrectly typeset as
a single equation without a separating semicolon. Here themstant k is given by

R =
11;2 h(x) dx

2+ 2 h(x)dx

k =

The expression forf in equation 15 of [12] is

R0V dx 1 -, “V-900n(x) dx
= o + = -
"2, h(x) dx 27 REZ (k) dx

(B2)

We can transform this expression fof into an expression that only depends on the derivative
of g by using (Bla) to convert the second integral to the integrabf (v(x)=V k) h(x)g(x),
plus an additional boundary term. We can then use (B1lb) to wte this as the integral
of (h(x)g)%(x). After integrating by parts and using the boundary conditons (B1c), we
arrive at Ry Ry
_1=(v(x)=V)?h3(x) dx 1 1 h(x)(gY(x))? dx

f = +210=5 — 5 (B3)
|1 2 I1

If we now leth(x) =1+ (x), and assume that 1 (what we call they call ), we nd
thatto rst orderin  and , what we call (x) is related to g(x) by

(x) =

We now see that our expressions (43b) and (44) agree with (BR) the limit as and
approach zero.
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